Polynomial Spline Approach for Double Integrals with Algebraic Singularity
نویسندگان
چکیده
منابع مشابه
From algebraic to analytic double product integrals
The algebraic theory of double product integrals and particularly its role in the quantisation of Lie bialgebras is described. When the underlying associative algebra is that of the Itô differentials of quantum stochastic calculus such product integrals are formally represented as operators which are infinite sums of iterated integrals in Fock space. In this paper we describe some of the analyt...
متن کاملAlgebraic Invariant Curves and Algebraic First Integrals for Riccati Polynomial Differential Systems
We characterize the algebraic invariant curves for the Riccati polynomial differential systems of the form x′ = 1, y′ = a(x)y+ b(x)y+ c(x), where a(x), b(x) and c(x) are arbitrary polynomials. We also characterize their algebraic first integrals.
متن کاملNon-polynomial Spline Method for Solving Coupled Burgers Equations
In this paper, non-polynomial spline method for solving Coupled Burgers Equations are presented. We take a new spline function. The stability analysis using Von-Neumann technique shows the scheme is unconditionally stable. To test accuracy the error norms 2L, L are computed and give two examples to illustrate the sufficiency of the method for solving such nonlinear partial differential equation...
متن کاملPolynomial spline surfaces with rational linear transitions
We explore a class of polynomial tensor-product spline surfaces on 3-6 polyhedra, whose vertices have valence n = 3 or n = 6. This restriction makes it possible to exclusively use rational linear transition maps between the pieces: transitions between the bi-cubic tensor-product spline pieces are either C1 or they are G1 (tangent continuous) based on one single rational linear reparameterizatio...
متن کاملnon-polynomial spline method for solving coupled burgers’ equations
in this paper, non-polynomial spline method for solving coupled burgers’ equations are presented. we take a new spline function. the stability analysis using von-neumann technique shows the scheme is unconditionally stable. to test accuracy the error norms2l, ∞l are computed and give two examples to illustrate the sufficiency of the method for solving such nonlinear partial differential equatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics: Conference Series
سال: 2013
ISSN: 1742-6588,1742-6596
DOI: 10.1088/1742-6596/435/1/012009